Том 60 2024 Вып. 4

УДК 621.391:519.725

© 2024 г. Ж. Рифа¹, М. Вильянуэва¹, В.А. Зиновьев², Д.В. Зиновьев²

О КРОНЕКЕРОВСКОЙ КОНСТРУКЦИИ РЕГУЛЯРНЫХ МАТРИЦ АДАМАРА И БЕНТ-ФУНКЦИЙ

Классическая кронекеровская конструкция применяется для построения новых матриц Адамара с новыми значениями ранга и размерности ядра. В частности, по двум матрицам Адамара H_1 и H_2 порядка n наша новая конструкция дает матрицу Адамара H порядка n^2 . Если одна из исходных матриц Адамара линейна (т.е. строки матрицы, представленные в двоичном виде, замкнуты относительно их покомпонентного сложения), то получающаяся матрица Адамара H сводится к регулярной матрице, когда все строки имеют один и тот же вес, равный $n^2/2 - n/2$ (при двоичном (0,1)-представлении получившейся матрицы Адамара H). В частности, таким способом мы получаем бент-функции, т.е. строки полученной матрицы Адамара H являются бент-функциями. Построены матрицы Адамара, в которых каждая строка и каждый столбец является бент-функцией.

Ключевые слова: матрица Адамара, конструкция Кронекера, размерность ядра, схема Менона, ранг, регулярная матрица Адамара, бент-функция.

DOI: 10.31857/S0555292324040016, EDN: LGMDZT

§ 1. Введение

Пусть $v>k>\lambda\geqslant 0$ — натуральные числа. Симметричная (v,k,λ) -схема — это структура инцидентности (X,B), где $X=\{x_1,\ldots,x_v\}$ — множество из v элементов, а $B=\{B_1,\ldots,B_v\}$ — семейство k-подмножеств множества X (называемых блоками), таких что любые два различных элемента x_i,x_j встречаются вместе ровно в λ блоках из семейства B. Такую схему можно описать ее матрицей инцидентности, а именно двоичной матрицей $A=[a_{i,j}]$ порядка v, где $a_{i,j}=1$ тогда и только тогда, когда $x_i\in B_j$.

$$HH^t = nI_n$$

где I_n — двоичная диагональная матрица порядка n, а H^t — транспонированная матрица H. Хорошо известно, что порядок n матрицы Адамара H равен 1, 2 или 4m для любого натурального числа m [1]. Две матрицы Адамара эквивалентны, если одна может быть получена из другой перестановкой строк и/или столбцов и умножением строк и/или столбцов на -1. Используя эти операции, матрицу Адамара

 $^{^1}$ Исследования выполнены при частичной поддержке Национального гранта правительства Испании PID2022-137924NB-I00 (AEI 10.13039/501100011033), а также гранта правительства Каталонии (SGR 2021-00643).

² Исследования выполнены в ИППИ им. А.А. Харкевича РАН в рамках проводимых фундаментальных исследований по теме "Математические основы теории корректирующих кодов".

всегда можно представить в *нормализованном* виде, где первая строка и первый столбец содержат только единицы. Будем говорить, что матрица Адамара *нормализована по строкам*, если первая строка содержит только единицы, и *нормализована по столбцам*, если первый столбец содержит только единицы.

Для двух заданных матриц $A = [a_{r,s}]$ и $B = [b_{i,j}]$ над одним и тем же кольцом без делителей нуля определим новую матрицу H, являющуюся кронекеровым (или прямым) произведением $H = A \otimes B$, где H получена заменой любого элемента $a_{r,s}$ матрицы A на матрицу $a_{r,s}B$. Самое первое известное семейство матриц Адамара, полученное Сильвестром, состоит из матриц порядка 2^n , где $n \geqslant 1$. Эти матрицы, называемые сильвестровыми матрицами $A \partial a M a p a$, строятся с помощью кронекеровского произведения $\otimes^n(S_1)$, т.е. итерацией тензорного произведения матрицы

$$S_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

на саму себя.

Если все элементы +1 матрицы H заменить элементом 0, а элементы -1 заменить элементом 1, то получим deouvnyo (0,1)-матрицу Adamapa, которую будем обозначать через H_b . Так как любые две строки совпадают в n/2 позициях и различны в n/2 позициях, легко видеть, что эти две строки находятся на расстоянии Хэмминга n/2 друг от друга. Двоичный (n,2n,n/2)-код, состоящий из строк двоичной матрицы Адамара порядка n и дополнительных к ним строк, называется (deouvnum) кодом Adamapa. Если матрица Адамара линейна, то соответствующий двоичный код Адамара представляет собой хорошо известный код Рида – Маллера первого порядка R(1,n) длины $n=2^m$ и размерности m+1.

Булева функция f — это отображение из двоичного пространства \mathbb{Z}_2^m всех двоичных векторов длины m в кольцо \mathbb{Z}_2 . Степень нелинейности булевой функции f определяется как минимальное расстояние Хэмминга между f и всеми аффинными функциями пространства \mathbb{Z}_2^m . Другими словами, это ее расстояние до кода Рида—Маллера первого порядка. Это расстояние ограничено сверху величиной

$$2^{m-1} - 2^{\frac{m}{2}-1},$$

причем в случае равенства (которое возможно только для четного m) функция называется бент-функцией. Одним из важных классов бент-функций является класс Майораны – Мак-Фарланда, введенный в [2] и представляющий собой булевы функции f(x,y) от 2m переменных вида

$$f(x,y) = \langle x, \pi(y) \rangle + h(y)$$
 для любых $x, y \in \mathbb{Z}_2^m$, (1)

где π — произвольная перестановка на множестве \mathbb{Z}_2^m , а h — произвольная булева функция от m переменных.

Двумя важными параметрами двоичных кодов являются ранг и размерность ядра. Panr двоичного кода C, обозначаемый $\operatorname{rank}(C)$, представляет собой размерность линейной оболочки $\langle C \rangle$, образованной кодовыми словами кода C. \mathcal{Adpo} K(C) двоичного кода C длины n определяется как

$$K(C) = \{ \boldsymbol{x} \in \mathbb{Z}_2^n : \boldsymbol{x} + C = C \}.$$

Если код C содержит нулевой вектор, то ядро $\mathrm{K}(C)$ является линейным подкодом кода C. Легко видеть, что если C линеен, то ядро совпадает с кодом:

$$K(C) = C = \langle C \rangle.$$

Обозначим через $\ker(C)$ размерность ядра кода C. Два этих параметра могут быть использованы для выяснения эквивалентности различных матриц Адамара или соответствующих кодов (см., например, [3]).

Хорошо известно, что нормализованная двоичная матрица Адамара порядка 4m существует тогда и только тогда, когда существует симметричная (4m-1,2m-1,m-1)-схема [4]. Однако в дальнейшем мы будем рассматривать другой тип (v,k,λ) -схем, также связанных с матрицами Адамара. Будем говорить, что матрица Адамара порядка n регулярна по строкам (соответственно, регулярна по столбцам), если сумма элементов каждой строки (соответственно, каждого столбца) одна и та же для всех строк (соответственно, всех столбцов). Кроме того, будем говорить, что матрица Адамара порядка n регулярна, если сумма элементов каждой строки и каждого столбца одна и та же для всех ее строк и столбцов [1].

Хорошо известно, что регулярная двоичная матрица Адамара порядка ν является матрицей инцидентности симметричной $(\nu^2, \nu^2/2 - \nu/2, \nu^2/4 - \nu/2)$ -схемы, обычно называемой cxemoù Mehoha [5]. И наоборот, матрица инцидентности симметричной $(\nu^2, \nu^2/2 - \nu/2, \nu^2/4 - \nu/2)$ -схемы представляет собой двоичную регулярную матрицу Адамара порядка ν^2 . Нетрудно видеть (и также хорошо известно), что матрица инцидентности симметричной (v, k, λ) -схемы при условии ортогональности $v = 4(k-\lambda)$ является двоичной регулярной матрицей Адамара порядка v, где v представляет собой полный квадрат.

Следующие две леммы относятся к регулярным матрицам Адамара. Первая из них представляет собой вариант хорошо известного результата Райзера [6], связанного с симметричными блок-схемами. Вторая лемма представляет собой важный результат о величине ядра любой двоичной регулярной матрицы Адамара.

 Π емма 1. Матрица Адамара, регулярная по строкам, регулярна, и ее порядок равен ν^2 , где ν – сумма элементов строки или столбца.

Доказательство. Пусть H – регулярная по строкам матрица Адамара порядка n, и предположим, что сумма каждой строки равна ν . Следовательно, $H {m u} = \nu {m u}$, где ${m u}$ – вектор из всех единиц. Тогда получаем

$$H^t H \boldsymbol{u} = \nu H^t \boldsymbol{u},$$

и так как H – матрица Адамара, то $n\boldsymbol{u}=\nu H^t\boldsymbol{u}$. Поэтому получаем

$$H^t \boldsymbol{u} = \frac{n}{\nu} \boldsymbol{u}.$$

Следовательно, все столбцы имеют одну и ту же сумму, равную $\frac{n}{\nu}$. Так как общая сумма всех элементов матрицы H совпадает с аналогичной суммой для матрицы H^t , получаем, что $n\frac{n}{\nu}=n\nu$, или $\frac{n}{\nu}=\nu$ (т.е. $n=\nu^2$). Это доказывает, что суммы по столбцам равны суммам по строкам, и поэтому матрица H регулярна. Мы также получили, что эта постоянная сумма ν удовлетворяет условию $\nu^2=n$.

 Π емма 2. Ядро двоичной регулярной матрицы Адамара порядка ν^2 содержит только нулевой вектор.

Доказательство. Пусть H – двоичная регулярная матрица Адамара порядка n. Предположим, что x – ненулевая строка матрицы H, т.е. двоичный вектор длины $\nu^2 = n$, такой что H + x = H. Это означает, что для любого вектора-строки матрицы H, скажем, r_1 , имеем $r_1 + x = r_2$, где r_2 – также вектор-строка матрицы H. Векторы r_1 и r_2 отличаются в n/2 позициях, следовательно, вес вектора x равен n/2. Зафиксируем любую ненулевую позицию вектора x. Если прибавить x ко всем строкам матрицы H, мы получим в этой фиксированной позиции (где x

имеет ненулевую позицию) столбец h матрицы H + x одного из двух весов:

$$n/2 + \sqrt{n}/2$$
 или $n/2 - \sqrt{n}/2$.

Так как $\operatorname{wt}(\boldsymbol{h}) \neq n - \operatorname{wt}(\boldsymbol{h})$, эта операция меняет число единиц матрицы H в этом столбце. Прибавление же нулевых позиций вектора \boldsymbol{x} не меняет числа единиц в соответствующем столбце. Так как $\operatorname{wt}(\boldsymbol{x}) = n/2$, заключаем, что число единиц в матрицах H и $H + \boldsymbol{x}$ различно, откуда следует, что \boldsymbol{x} – нулевой вектор. \blacktriangle

В 1962 г. Менон [5] построил класс симметричных блок схем с параметрами

$$(2^{2m}, 2^{2m-1} \pm 2^{m-1}, 2^{2m-2} \pm 2^{m-1})$$

с помощью разностных множеств в абелевых группах, что непосредственно приводит к бент-функциям. В работе [7] эта конструкция была изучена в терминах полностью регулярных кодов, причем в ней был построен еще один класс таких функций. Затем идеи этой конструкции были перенесены на бент-функции в [8], где было получено очень простое описание всех симметричных квадратичных бентфункций. Симметричные ортогональные схемы (или регулярные матрицы Адамара) являются предметом активных исследований в течение более 50 лет (см. работу [1] и библиографию в ней).

Мейснер [9] предложил весьма общую конструкцию регулярных матриц Адамара, основанную на кронекеровском произведении. В качестве исходных матриц он использовал a^2 матриц Адамара порядка v и 2a матриц Адамара порядка a. При некоторых условиях на исходные матрицы получаемая матрица оказывается регулярной матрицей Адамара порядка a^2v . В частности, его конструкция дает симметричные и кососимметричные регулярные матрицы Адамара.

Цель настоящей статьи — описать общую конструкцию регулярных матриц Адамара и бент-функций. Наша конструкция представляет собой вариант конструкции Кронекера. В отличии от конструкции Мейснера в [9], наша конструкция фактически основана на четырех различных исходных матрицах порядка ν и ν^2 , а именно на двух произвольных матрицах Адамара одинакового порядка ν , специальной двоичной перестановочной матрице порядка ν^2 и произвольном векторе длины ν^2 с элементами ± 1 . Получаемая матрица L всегда является матрицей Адамара порядка ν^2 (теорема 1). Если одна из исходных матриц линейна, то получаемая матрица L является регулярной, а в случае, когда эта исходная матрица является сильвестровой матрицей Адамара, в получаемой матрице L каждая строка или каждый столбец (в зависимости от использования исходных матриц Адамара, т.е. от того, какая из этих матриц линейна) является бент-функцией (теорема 2).

В случае, когда обе начальные матрицы Адамара линейны и нормализованы, можно получить верхнюю границу на ранг получаемой двоичной матрицы Адамара L_b и гарантировать существование бент-функций максимальной алгебраической степени (теорема 3). В § 3 даны две явные конструкции, для которых почти во всех случаях мы знаем алгебраическую степень бент-функций и ранг получаемой матрицы Адамара. Используя конструкцию, приведенную в п. 3.2, мы получаем регулярные матрицы Адамара, в которых каждая строка и каждый столбец является бент-функцией (теорема 4).

\S 2. Матрицы Адамара порядка u^2

Начнем с рассмотрения перестановок, имеющих некоторые специфические свойства, позволяющие нам получать бент-функции в каждой строке матрицы Адамара, задаваемой формулой (8).

Пусть $L = [\ell_{i,j}]$ – квадратная матрица порядка ν^2 . Перенумеруем ее строки и столбцы парами чисел из алфавита $\{1,\ldots,\nu\}$. В этих обозначениях произвольный

элемент L имеет номер

$$\ell_{(a-1)\nu+x,(b-1)\nu+y} = \ell_{(a,x),(b,y)}, \quad 1 \leqslant a, x, b, y \leqslant \nu.$$
(2)

Назовем блоком с номером (a,b) подматрицу матрицы L, образованную элементами вида (2), где числа a и b фиксированы. Элемент $\ell_{(a,x),(b,y)}$ матрицы L называется элементом (x,y) блока (a,b).

Определение 1. Назовем c-перестановкой (блоковой перестановкой) перестановочную матрицу $P^{(c)}$ порядка ν^2 , содержащую в каждом блоке ровно один ненулевой элемент 1.

Латинским квадратом порядка ν называется $(\nu \times \nu)$ -матрица P, элементами которой являются ν разных чисел $1,2,\ldots,\nu$, так что каждое число встречается по одному разу в каждой строке и в каждом столбце этой матрицы. Два латинских квадрата $P=[p_{ij}]$ и $Q=[q_{ij}]$ порядка ν ортогональны, если упорядоченная пара чисел (p_{ij},q_{ij}) встречается ровно один раз, когда i,j пробегают все значения из множества $\{1,\ldots,\nu\}$.

Чтобы работать с блоковыми перестановками, удобно использовать двоичные квадратные матрицы порядка ν только с одним ненулевым элементом. Обозначим через $Z_{i,j}$ такую матрицу с одним ненулевым элементом 1 в позиции (i,j). Обозначим через σ произвольное отображение множества $\{Z_{i,j}\}$ в себя. В этих обозначениях c-перестановку $P^{(c)}$ можно представить в следующем виде:

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j}).$$

Определение 2. Назовем lc-перестановкой (латинско-блоковой перестановкой) блоковую перестановочную матрицу $P^{(c)}$ порядка ν^2 следующего вида:

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j}), \tag{3}$$

где σ — отображение множества $\{Z_{i,j}\}$ в себя, такое что для каждого индекса $i\in\{1,\dots,\nu\}$ матрица $\sum\limits_{j=1}^{\nu}\sigma(Z_{i,j})$ является перестановочной.

Перед тем как рассматривать дальнейшие результаты, напомним некоторые известные факты о кронекеровском произведении. Пусть A, B, C, D — матрицы над одним и тем же кольцом без делителей нуля, такие что имеют смысл произведения матриц (AB) и (CD). Тогда имеют место следующие равенства:

$$(AB) \otimes (CD) = (A \otimes C)(B \otimes D). \tag{4}$$

Если A и B – квадратные матрицы порядка ν , то имеет место следующее равенство:

$$A \otimes B = K_{\nu^2}(B \otimes A)K_{\nu^2},\tag{5}$$

где K_{ν^2} — перестановочная матрица, обычно называемая коммутационной матрицей порядка ν^2 [10] и определяемая как

$$K_{\nu^2} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes Z_{i,j}^t. \tag{6}$$

Лемма 3. Пусть

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j})$$

- lc-перестановочная матрица порядка ν^2 , σ - coomsemcms ующее отображение из множества $\{Z_{i,j}\}$ в себя, а K_{ν^2} - коммутационная матрица порядка ν^2 , где $\nu\geqslant 4$. Тогда матрица $P^{(c)}K_{\nu^2}$ является lc-перестановочной.

Доказательство. Из соотношений (3)-(6) следует, что

$$P^{(c)}K_{\nu^2} = \left(\sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j})\right) \left(\sum_{k,s=1}^{\nu} Z_{k,s} \otimes Z_{k,s}^t\right) =$$

$$= \sum_{i,j,k,s=1}^{\nu} Z_{i,j}Z_{k,s} \otimes \sigma(Z_{i,j})Z_{k,s}^t.$$

Матрица $Z_{i,j}Z_{k,s}$ всегда нулевая, кроме случая, когда k=j. Следовательно,

$$Z_{i,j}Z_{k,s} = \delta_{kj}Z_{i,s},$$

где $\delta_{kj} = 1$, если k = j, и $\delta_{kj} = 0$ в остальных случаях. Таким образом,

$$P^{(c)}K_{\nu^2} = \sum_{i,j,s=1}^{\nu} Z_{i,s} \otimes \sigma(Z_{i,j}) Z_{j,s}^t = \sum_{i,s=1}^{\nu} Z_{i,s} \otimes \left(\sum_{j=1}^{\nu} \sigma(Z_{i,j}) Z_{s,j}\right).$$

Так как $P^{(c)}$ является lc-перестановочной матрицей, то для любого индекса $i\in\{1,\dots,\nu\}$ матрица $\sum\limits_{j=1}^{\nu}\sigma(Z_{i,j})$ является перестановочной. Заметим, что $\sum\limits_{j=1}^{\nu}\sigma(Z_{i,j})$ будет перестановочной матрицей, если и только если $\sigma(Z_{i,j})=Z_{\alpha_j,\beta_j}$, где оба элемента α_j и β_j покрывают весь диапазон $\{1,\dots,\nu\}$, когда $j\in\{1,\dots,\nu\}$.

Для $j \in \{1, \dots, \nu\}$ произведение $\sigma(Z_{i,j})Z_{s,j}$ всегда равно нулю, кроме случая, когда индекс $\sigma(Z_{i,j})$ имеет вид $Z_{x,s}$ для некоторого индекса x, который всегда существует, так как по определению lc-перестановки сумма $\sum_{j=1}^{\nu} \sigma(Z_{i,j})$ является перестановочной матрицей. Это означает, что существует некоторое значение индекса j, скажем, y, такое что

$$\sum_{j=1}^{\nu} \sigma(Z_{i,j}) Z_{s,j} = Z_{x,y}.$$

Тем самым, можно определить отображение

$$\sigma'(Z_{i,s}) = Z_{x,y}.$$

Таким образом, получаем, что

$$P^{(c)}K_{\nu^2} = \sum_{i,s=1}^{\nu} Z_{i,s} \otimes \sigma'(Z_{i,s}).$$

В силу определения 2, чтобы доказать, что $P^{(c)}K_{\nu^2}$ является lc-перестановочной, нужно проверить, что для любого индекса $i\in\{1,\dots,\nu\}$ матрица $\sum\limits_{s=1}^{\nu}\sigma'(Z_{i,s})$

представляет собой перестановочную матрицу. Еще раз перепишем

$$\sum_{s=1}^{\nu} \sigma'(Z_{i,s}) = \sum_{s,j=1}^{\nu} \sigma(Z_{i,j}) Z_{s,j} = \sum_{j=1}^{\nu} \left(\sigma(Z_{i,j}) \left(\sum_{s=1}^{\nu} Z_{s,j} \right) \right) = \sum_{j=1}^{\nu} \sigma(Z_{i,j}) M_j,$$

где M_j — матрица, имеющая единицы только в j-м столбце и нули в остальных. Следовательно, справедливо равенство

$$\sum_{s=1}^{\nu} \sigma'(Z_{i,s}) = \sum_{j=1}^{\nu} (Z_{\alpha_j,\beta_j} M_j) = \sum_{j=1}^{\nu} Z_{\alpha_j,j}.$$

Теперь ясно, что оба индекса α_j и j покрывают весь диапазон $\{1,\ldots,\nu\}$, когда $j\in\{1,\ldots,\nu\}$. \blacktriangle

Пусть $c = (c_1, c_2, \ldots, c_{\nu^2})$ – вектор длины ν^2 с элементами ± 1 . Этот вектор c можно представить в блоковом виде $c = (c_1, \ldots, c_{\nu})$, где каждый блок c_k , $k = 1, \ldots, \nu$, имеет длину ν . Назовем такой вектор c блочно-постоянным, если он имеет постоянное значение на всех позициях каждого блока c_i , т.е. блок c_i имеет вид $c_i = c_i(11\ldots 11)$, где $c_i \in \{\pm 1\}$. Следующее утверждение тривиально.

 Π емма 4. Π усть c – блочно-постоянный ± 1 -вектор длины ν^2 , a M – матрица порядка $\nu \geqslant 4$. Tогда

$$\operatorname{diag}(\boldsymbol{c})\left(I_{\nu}\otimes M\right)=\left(I_{\nu}\otimes M\right)\operatorname{diag}(\boldsymbol{c}),$$

где $\operatorname{diag}(\boldsymbol{c})$ означает квадратную двоичную диагональную матрицу, содержащую вектор \boldsymbol{c} на диагонали и нули во всех других позициях.

 Π е м м а 5. Пусть $P^{(c)}$ является c-перестановочной матрицей порядка ν^2 , σ – соответствующее отображение множества $\{Z_{i,j}\}$ в себя, а $\mathbf{c}=(c_1,c_2,\ldots,c_{\nu^2})$ – произвольный вектор длины ν^2 с элементами ± 1 , где $\nu\geqslant 4$. Тогда

$$P^{(c)} \operatorname{diag}(\boldsymbol{c}) = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \varepsilon_{ij} \sigma(Z_{i,j}),$$

$$\epsilon \partial e \ \sigma(Z_{i,j}) = Z_{k,s} \ u \ \varepsilon_{ij} = c_{s+(j-1)\nu}.$$

Доказательство. Вектор $c=(c_1,c_2,\ldots,c_{\nu^2})$ можно представить в блоковом виде следующим образом: $c=(c_1,\ldots,c_{\nu})$, где каждый блок c_t имеет вид

$$\mathbf{c}_t = (c_{1+(t-1)\nu}, c_{2+(t-1)\nu}, \dots, c_{\nu+(t-1)\nu}).$$

Следовательно, $\mathbf{c} = (c_{r+(t-1)\nu})$, где $r, t \in \{1, \dots, \nu\}$.

Поэтому можно записать

$$\operatorname{diag}(\boldsymbol{c}) = \sum_{r,t=1}^{\nu} c_{r+(t-1)\nu}(Z_{t,t} \otimes Z_{r,r}). \tag{7}$$

Таким образом,

$$P^{(c)}\operatorname{diag}(\mathbf{c}) = \left(\sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j})\right)\operatorname{diag}(\mathbf{c}) =$$

$$= \left(\sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j})\right) \left(\sum_{r,t=1}^{\nu} c_{r+(t-1)\nu}(Z_{t,t} \otimes Z_{r,r})\right).$$

Используя (4) и тот факт, что для любых $a,b,c,d \in \{1,\ldots,\nu\}$ справедливо равенство $Z_{a,b}Z_{c,d} = \delta_{bc}Z_{a,d}$, где $\delta_{bc} = 1$, если b = c, и $\delta_{bc} = 0$ в противном случае, получаем

$$P^{(c)}\operatorname{diag}(\boldsymbol{c}) = \sum_{i,j,r,t=1}^{\nu} c_{r+(t-1)\nu} \delta_{jt} Z_{i,t} \otimes \delta_{sr} Z_{k,r},$$

где $\sigma(Z_{i,j}) = Z_{k,s}$. Следовательно,

$$P^{(c)}\operatorname{diag}(\boldsymbol{c}) = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes c_{r+(j-1)\nu}\sigma(Z_{i,j}) = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \varepsilon_{ij}\sigma(Z_{i,j}),$$

где
$$\varepsilon_{ij} = c_{s+(j-1)\nu}$$
.

 Π е м м а 6. Пусть c – произвольный вектор длины ν^2 с элементами ± 1 , а K_{ν^2} – коммутационная матрица порядка ν^2 , где $\nu \geqslant 4$. Тогда существует вектор d длины ν^2 с элементами ± 1 , такой что

$$\operatorname{diag}(\boldsymbol{c})K_{\nu^2} = K_{\nu^2}\operatorname{diag}(\boldsymbol{d}).$$

Доказательство. Так как K_{ν^2} является перестановочной матрицей, в качестве вектора d с элементами ± 1 можно выбрать вектор d, такой что

$$\operatorname{diag}(\boldsymbol{d}) = K_{\nu^2}^{-1} \operatorname{diag}(\boldsymbol{c}) K_{\nu^2}.$$

Заметим, что вектор d из элементов ± 1 длины ν^2 задается выражением

$$d_{t+(r-1)\nu} = c_{r+(t-1)\nu}.$$

Следующая теорема приведена в [11,12].

Теорема 1. Пусть ν – произвольное натуральное число, такое что существует матрица Адамара порядка ν . Пусть $P^{(c)}$ – с-перестановочная матрица порядка ν^2 , а \mathbf{c} – произвольный ± 1 -вектор длины ν^2 , и пусть H_1 и H_2 – любые матрицы Адамара порядка ν . Пусть L – матрица следующего вида:

$$L = (I_{\nu} \otimes H_1) P^{(c)} \operatorname{diag}(\mathbf{c}) (I_{\nu} \otimes H_2).$$
(8)

Tогда L является матрицей Aдамара порядка ν^2 .

Доказательство этой теоремы можно найти в [13].

Одним из основных результатов данной статьи является следующий.

Теорема 2. Пусть $P^{(c)}$ – lc-перестановочная матрица порядка ν^2 , c – произвольный вектор длины ν^2 с элементами ± 1 , H_1 – произвольная матрица Адамара порядка ν , u H_2 – сильвестрова матрица Адамара порядка $\nu \geqslant 4$.

Пусть

$$L = (I_{\nu} \otimes H_1) P^{(c)} \operatorname{diag}(\mathbf{c}) (I_{\nu} \otimes H_2).$$

Тогда

- (i) Матрица L представляет собой матрицу Aдамара c двумя возможными значениями $\pm \nu$ весов (т.е. суммы элементов) ее строк, и меняя знаки строк (умножением строк на -1), меняя тем самым сумму $-\nu$ на сумму ν , мы получаем регулярную матрицу Aдамара L^* c суммой элементов каждой строки и каждого столбца, равной ν ;
- (ii) Каждая строка двоичной матрицы L_b (т.е. матрицы L_b^* , полученной из L^*) является бент-функцией типа Майораны Мак-Фарланда.

 \mathcal{A} о к а з а т е л ь с т в о. Так как $P^{(c)}$ является lc-перестановочной матрицей и, следовательно, c-перестановочной, из теоремы 1 мы получаем, что L является матрицей Адамара. Теперь вычислим скалярное произведение любой строки матрицы L с любой строкой сильвестровой матрицы Адамара порядка ν^2 , которую можно представить в виде $H \otimes H$, где H – сильвестрова матрица Адамара порядка ν . Возьмем также в качестве H_2 сильвестрову матрицу Адамара H. Тогда получаем

$$L(H \otimes H)^{t} = (I_{\nu} \otimes H_{1}) P^{(c)} \operatorname{diag}(\mathbf{c}) (I_{\nu} \otimes H) (H^{t} \otimes H^{t}) =$$

$$= (I_{\nu} \otimes H_{1}) P^{(c)} \operatorname{diag}(\mathbf{c}) (H^{t} \otimes \nu I_{\nu}) =$$

$$= \nu (I_{\nu} \otimes H_{1}) P^{(c)} \operatorname{diag}(\mathbf{c}) K_{\nu^{2}} (I_{\nu} \otimes H^{t}) K_{\nu^{2}} =$$

$$= \nu (I_{\nu} \otimes H_{1}) P^{(c)} K_{\nu^{2}} \operatorname{diag}(\mathbf{d}) (I_{\nu} \otimes H^{t}) K_{\nu^{2}},$$
(9)

где K_{ν^2} – коммутационная матрица (см. (6)), а ${m d}$ – вектор длины ν^2 с элементами ± 1 , указанный в лемме 6. Из леммы 3 получаем, что $P^{(c)}K_{\nu^2}$ – lc-перестановочная матрица, и так как K_{ν^2} – перестановочная матрица, мы заключаем, что матрица

$$\frac{1}{\nu}L(H\otimes H)^t$$

является матрицей Адамара. Элементами матрицы $L(H\otimes H)^t$ являются $\pm \nu$. Следовательно, так как скалярное произведение любой строки L с любой строкой сильвестровой матрицы Адамара соответствует элементам матрицы $L(H\otimes H)^t$, мы получаем, что скалярные произведения равны $\pm \nu$. Так как первая строка сильвестровой матрицы Адамара $H\otimes H$ — это вектор из всех единиц, мы заключаем, что сумма элементов каждой строки матрицы L принимает два значения $\pm \nu$. Меняя знаки элементов строк с суммой — ν на противоположные (умножением этих строк на -1), мы получаем матрицу L^* с постоянной суммой элементов всех строк, равной ν , что означает регулярность по строкам матрицы L^* , а значит, по лемме 1, и регулярность с суммой элементов каждой строки и каждого столбца, равной ν , что доказывает утверждение (i).

Для доказательства утверждения (ii) необходимо проверить расстояние Хэмминга от любой строки L_b до сильвестровой матрицы Адамара $(H \otimes H)_b$. Из предыдущих рассуждений известно, что значения скалярного произведения строк матрицы L со строками матрицы $H \otimes H$ равны $\pm \nu$. Это означает, что расстояние Хэмминга между строками L_b и строками $(H \otimes H)_b$ равно $\frac{\nu^2 \pm \nu}{2}$, и поэтому минимальное расстоя-

ние между строками этих двух матриц равно $\frac{\nu^2-\nu}{2}$. Отсюда вытекает, что любая строка матрицы L_b дает бент-функцию. Тот факт, что полученные бент-функции являются функциями типа Майораны – Мак-Фарланда, доказан в [13]. \blacktriangle

Теперь мы переходим к рассмотрению алгебраической степени построенных регулярных матриц Адамара. Напомним, что преобразование Мёбиуса булевой функции связывает таблицу истинности функции с ее алгебраической нормальной формой (АНФ). Здесь мы следуем работе [14].

В начале перечислим все векторы пространства \mathbb{Z}_2^m в виде

$$\alpha_0 = (0, \dots, 0), \quad \alpha_1 = (0, \dots, 1), \quad \dots, \quad \alpha_{2^m - 1} = (1, \dots, 1),$$

где α_i — двоичное представление целого числа i. Таблица истинности булевой функции f на \mathbb{Z}_2^m представляет собой двоичную последовательность, определяемую следующим образом:

$$(f(\alpha_0), f(\alpha_1), \ldots, f(\alpha_{2^m-1})).$$

Функцию f можно единственным образом представить в виде $AH\Phi$ как

$$f(x_1, \dots, x_m) = \bigoplus_{(a_1, \dots, a_m)} g(a_1, \dots, a_m) x_1^{a_1} \dots x_m^{a_m},$$
(10)

где $(a_1, \ldots, a_m) \in \mathbb{Z}_2^m$, а g – функция на \mathbb{Z}_2^m , которая называется *преобразованием* Mёбиуса функции f и обозначается через $g = \mu(f)$.

Для булевой функции f число переменных в самом длинном мономе ее $AH\Phi$ называется ее алгебраической степенью и обозначается $\deg(f)$. Хорошо известно (см., например, [15]), что для любой бент-функции f с 2m переменными справедливо неравенство

$$\deg(f) \leqslant m$$
.

Если $\deg(f)=m,$ то f называется бент-функцией с максимальной алгебраической степенью.

Преобразование Мёбиуса задается двоичной $(2^m \times 2^m)$ -матрицей T_m , i-я строка которой представляет собой таблицу истинности монома $x_1^{a_1} \dots x_m^{a_m}$, где (a_1, \dots, a_m) – двоичное представление целого числа i. Матрицу T_m можно рекуррентно представить в следующем виде:

$$T_s = \begin{pmatrix} T_{s-1} & T_{s-1} \\ 0_{s-1} & T_{s-1} \end{pmatrix},$$

где 0_{s-1} – нулевая матрица размера $2^{s-1} \times 2^{s-1}$, матрица T_1 имеет вид

$$T_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

а $s \geqslant 2$ – любое целое число. Более того, матрица T_m обладает следующим свойством:

$$T_m^{-1} = T_m,$$

и для заданной булевой функции f имеем

$$(f(\alpha_0), f(\alpha_1), \dots, f(\alpha_{2^m-1}))T_m = (g(\alpha_1), \dots, g(\alpha_{2^m-1})).$$
 (11)

Алгебраическая степень бент-функции, заданной строками матрицы L_b в теореме 2, почти всегда максимальна, т.е. достигает максимума для бент-функции. Это максимальное значение равно m, где $\nu=2^m$. Следующая теорема, в которой добавлены некоторые ограничения на условия теоремы 2, показывает, что при изменении вектора \boldsymbol{c} по крайней мере одна строка в матрице L_b даст бент-функцию с максимальной алгебраической степенью. Кроме того, мы получаем верхнюю границу на ранг полученной регулярной матрицы Адамара L_b^* , ассоциированной с матрицей L_b .

 $\Pi ycmb$

$$L = (I_{\nu} \otimes H_1) P^{(c)} \operatorname{diag}(\mathbf{c}) (I_{\nu} \otimes H_2),$$

и пусть L^* – регулярная матрица Адамара, ассоциированная с L (т.е. полученная умножением соответствующих строк на -1). Пусть L_b и L_b^* – двоичные матрицы, отвечающие матрицам L и L^* соответственно. Наконец, пусть i – любое число в диапазоне $i \in \{1, \ldots, \nu^2\}$. Тогда

- (i) ${\rm rank}(L_b^*) \leqslant 2\nu 2$, если c постоянный блоковый вектор, u ${\rm rank}(L_b^*) \leqslant 2\nu 1$ в противном случае;
- (ii) $\ker(L_h^*) = (0, 0, \dots, 0);$
- (iii) для заданного $i \in \{1, \dots, \nu^2\}$ существует вектор c, такой что i-я строка матрицы L_b^* является бент-функцией с максимальной алгебраической степенью m.

Доказательство. Для доказательства первого утверждения заметим, что

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j}),$$

где $\sigma(Z_{i,j}) = Z_{k,s}$, так что в множестве пар $\{(k,s)\}$, индуцированных при фиксации индекса i, имеются все значения $k,s \in \{1,\ldots,\nu\}$.

Выберем сильвестровы матрицы Адамара $H_1 = H_2 = H$. Возьмем также в качестве \boldsymbol{c} постоянный вектор из всех единиц (в противном случае применим лемму 4). Тогда получаем

$$L = (I_{\nu} \otimes H_{1}) P^{(c)} (I_{\nu} \otimes H_{2}) =$$

$$= \sum_{i,j=1}^{\nu} (I_{\nu} \otimes H) (Z_{i,j} \otimes Z_{k,s}) (I_{\nu} \otimes H) = \sum_{i,j=1}^{\nu} (Z_{i,j} \otimes HZ_{k,s}H).$$

Матрицу L можно рассматривать как матрицу, состоящую из блоков размера $\nu \times \nu$. Каждый блок матрицы L соответствует разным значениям индексов i,j (т.е. каждый из ν^2 блоков задан одной упорядоченной парой индексов (i,j)),

$$L = \sum_{i,j=1}^{\nu} (Z_{i,j} \otimes HZ_{k,s}H).$$

Пусть H_b и L_b – двоичные матрицы, отвечающие матрицам H и L соответственно. Заметим, что элемент с координатами (a,b) в блоке с координатной парой (i,j) матрицы $HZ_{k,s}H$ равен $h_{a,k}h_{s,b}$, где h_{xy} обозначает элемент (x,y) матрицы H. Для удобства обозначим через $\bar{h}_{a,b}$ двоичное значение элемента $h_{a,b}$, т.е. $\bar{h}_{a,b}=0$, когда $h_{a,b}=1$, и $\bar{h}_{a,b}=1$, когда $h_{a,b}=-1$. Следовательно, элементом с координатами (a,b) матрицы $(HZ_{k,s}H)_b$ (т.е. блока (i,j)) является следующая сумма двух элементов:

$$\bar{h}_{a,k} + \bar{h}_{s,b}. \tag{12}$$

Рассмотрим теперь две строки матрицы L_b внутри одного и того же строчного блока. Величина $\bar{h}_{x,y}$ равна 0 или 1 в матрице H_b . Каждую строку можно разбить на ν последовательных столбцевых блоков, и можно убедиться, что элементы первого столбца этих двух строк равны $(\bar{h}_{a,k}+\bar{h}_{s,b})$ и $(\bar{h}_{a',k}+\bar{h}_{s,b})$ соответственно, где индексы k,s,a,a' фиксированы и $b\in\{1,\ldots,\nu\}$. Складывая эти две строки матрицы L_b , мы получим вектор, такой что все элементы в координатах первого столбцевого блока равны $\bar{h}_{a,k}+\bar{h}_{a',k}$. Для всех других элементов столбцевых блоков имеем такое же выражение, но с другим k. Так как величина $\bar{h}_{a,k}+\bar{h}_{a',k}$ не зависит от b, то это означает, что полученный вектор имеет постоянное значение 0 или 1 в каждом блоке. Если мы отождествим все координаты одного столбцевого блока в одну координату (а это можно сделать, так как все эти координаты имеют одно и то же значение), мы получим сумму двух строк с индексами a и a' матрицы H_b после перестановки столбцов в соответствии с σ .

Применяя теперь это же рассуждение ко всем ν строчным блокам в матрице L_b , мы каждый раз будем получать сумму тех же самых двух строк в матрице H_b с ин-

дексами a и a' после некоторой перестановки столбцов. Следовательно, множество S всех двоичных векторов, получаемых как сумма двух строк матрицы L_b в одном и том же строчном блоке, эквивалентны с точки зрения линейной зависимости множеству S' всех двоичных векторов, полученных как сумма двух строк матрицы H_b после некоторой перестановки столбцов. Следовательно, ранг S не выше $\nu-2$. Чтобы получить L^* из L, нужно добавить вектор из всех единиц. Следовательно, прибавляя вектор из всех единиц к строкам множества S', мы получим множество векторов длины ν четного веса, откуда

$$rank(S^*) \leqslant \nu - 1,$$

где через S^* обозначено множество строк S с добавлением вектора из всех единиц.

Чтобы вычислить $\operatorname{rank}(L_b)$, рассмотрим вышеуказанное множество векторов S^* , а также все строки из V, где V – подмножество строк матрицы L_b , не содержащее двух строк из одного и того же строчного блока. Например, можно взять все строки в матрице H_b с координатами

$$(\bar{h}_{1,k} + \bar{h}_{s,1}, \bar{h}_{1,k} + \bar{h}_{s,2}, \ldots),$$

где $k,s\in\{1,\ldots,\nu\}$. Каждый вектор из множества V представляет собой последовательное повторение ν блоков, где каждый блок – это строка матрицы H_b . Полное число векторов в множестве V равно ν , но при этом сложение всех векторов из V дает нулевой вектор. Следовательно, $\mathrm{rank}(V)\leqslant\nu-1$, и поэтому

$$rank(L_h^*) \leq \nu - 1 + \nu - 1 = 2\nu - 2.$$

Если теперь c является блочно-постоянным вектором, но не вектором из всех единиц, то используя лемму 4 и приведенные выше рассуждения, легко убедиться, что ранг матрицы L_b^* удовлетворяет той же самой верхней границе.

Пусть теперь c является не блочно-постоянным вектором, а произвольным вектором с элементами $\pm 1.$ В этом случае используем лемму 5. При этом выражение (12) принимает вид

$$\bar{h}_{a,k} + \bar{h}_{s,b} + \delta_{ks}$$

где δ_{ks} принимает двоичные значения 0 или 1 в зависимости от значения +1 или -1 величины ε_{ij} в лемме 5 соответственно.

Теперь с помощью тех же рассуждений, которые использовались в случае, когда c является вектором из всех единиц, $\operatorname{rank}(S^*)$ вычисляется точно так же, без какихлибо изменений, но при построении множества V мы не можем гарантировать, что сложение всех векторов множества V дает нулевой вектор. Следовательно, мы можем лишь заключить, что $\operatorname{rank}(V) \leqslant \nu$, и поэтому

$$\operatorname{rank}(L_b^*) \leqslant 2\nu - 1.$$

На этом заканчивается доказательство первого утверждения теоремы.

Второе утверждение теоремы вытекает непосредственно из леммы 2.

Для доказательства третьего утверждения, следуя формуле (11), вычислим $g = fT_m$, где $\nu = 2^m$, f – любая строка матрицы L_b , а g задает АНФ-представление бент-функции, соответствующей строке f.

Рассмотрим $T_m^{(a)}$, т.е. a-й столбец матрицы T_m , где

$$a = 2 + 2^m (2^{m-1} - 1).$$

Вес Хэмминга двоичного представления числа a равен m. Это означает, что когда $fT_m^{(a)}=1$, в выражении $g=fT_m$ заведомо имеется моном алгебраической степени m.

Следовательно, для доказательства утверждения (iii) нужно вычислить $fT_m^{(a)}$ для строк f матрицы L_b и проверить, что результат вычисления равен 1.

Выберем строку в матрице L_b , например, i-ю строку блока, для которого матрицы $Z_{k,s}$ имеют индексы $\{(k_1,s_1),\ldots,(k_{\nu},s_{\nu})\}$. Заметим, что в столбце $T_m^{(a)}$ всюду стоят нули, кроме следующих ν координатных позиций:

1, 2,
$$\nu + 1$$
, $\nu + 2$, $2\nu + 1$, $2\nu + 2$, ..., $\left(\frac{\nu}{2} - 1\right)\nu + 1$, $\left(\frac{\nu}{2} - 1\right)\nu + 2$.

Элементами выбранной строки являются $\bar{h}_{i,k} + \bar{h}_{s,j}$, где индекс i фиксирован, а $j \in \{1,\ldots,\nu\}$. Пара индексов (k,s) пробегает значения $\{(k_1,s_1),\ldots,(k_\nu,s_\nu)\}$. Вычисляя $fT_m^{(a)}$, получаем

$$\begin{split} fT_m^{(a)} &= \bar{h}_{i,k_1} + \bar{h}_{s_1,1} + \bar{h}_{i,k_1} + \bar{h}_{s_1,2} + \bar{h}_{i,k_2} + \bar{h}_{s_2,1} + \bar{h}_{i,k_2} + \bar{h}_{s_2,2} + \ldots + \\ &+ \bar{h}_{i,k_\mu} + \bar{h}_{s_\mu,1} + \bar{h}_{i,k_\mu} + \bar{h}_{s_\mu,2} = \bar{h}_{s_1,1} + \bar{h}_{s_1,2} + \bar{h}_{s_2,1} + \bar{h}_{s_2,2} + \ldots + \bar{h}_{s_\mu,1} + \bar{h}_{s_\mu,2}, \end{split}$$

где $\mu=\nu/2$. Это значение соответствует сложению всех элементов координатных позиций обоих столбцов, 1-го и 2-го, всех $\nu/2$ строк матрицы H_b с номерами s_1,s_2,\ldots,s_μ . Так как H_b – нормализованная двоичная матрица Адамара, все элементы первого столбца являются нулями, и поэтому величина fT_m равна сумме всех координат второго столбца матрицы H_b , соответствующих $\nu/2$ разным строкам с номерами s_1,s_2,\ldots,s_μ . Эта сумма не обязательно равна 1, однако мы можем изменить символ в координате s_1 , сохраняя остальные значения в координатах s_2,\ldots,s_μ без изменения. Возьмем в качестве c вектор, все элементы которого равны 1, за исключением одного элемента -1 в позиции $c_{s_1+(j-1)\nu}$, где $\sigma(Z_{i,j})=Z_{k_1,s_1}$. Теперь утверждение (iii) следует из леммы 5. \blacktriangle

Из теоремы 2 мы видим, что из lc-перестановочной матрицы порядка ν^2 мы получаем матрицу Адамара

$$L = (I_{\nu} \otimes H_1) P^{(c)} \operatorname{diag}(\mathbf{c}) (I_{\nu} \otimes H_2),$$

строками которой являются бент-функции. Однако столбцы L_b не обязательно дают бент-функции. Это происходит из-за того, что определение lc-перестановочной матрицы не "симметрично". Пусть $P^{(c)}-c$ -перестановочная матрица порядка ν^2 . Чтобы эта матрица $P^{(c)}$ была lc-перестановочной, необходимо, чтобы выполнялось равенство

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j}),$$

где σ – отображение множества матриц $\{Z_{i,j}\}$ в себя, такое что для каждого индекса i сумма таких матриц по j

$$\sum_{i=1}^{\nu} \sigma(Z_{i,j})$$

представляет собой перестановочную матрицу (напомним, что двоичная матрица Z_{ij} размера $\nu \times \nu$ имеет только один ненулевой элемент в позиции (i,j)). Чтобы получить матрицу Адамара L, в которой каждая строка и каждый столбец матрицы L_b является бент-функцией, мы должны гарантировать, что для каждого индекса j сумма таких матриц по индексу i дает перестановочную матрицу, т.е. для каждого

индекса ј матрица

$$\sum_{i=1}^{\nu} \sigma(Z_{i,j})$$

является перестановочной. Достаточным условием для этого является наличие матрицы G с парой (k,s) в i-й строке и j-м столбце, такой что $\sigma(Z_{i,j})=Z_{k,s}$. Такую матрицу можно задать с помощью двух латинских квадратов. Это приводит к следующему определению.

Определение 3. Пусть G и D – два взаимно ортогональных латинских квадрата порядка ν . Определим биективное отображение

$$\sigma(Z_{i,j}) = Z_{k,s},$$

где $G_{ij}=k$ и $D_{ij}=s$. Определим olc-перестановочную матрицу $P^{(c)}$ порядка ν^2 следующим образом:

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j}). \tag{13}$$

Теперь непосредственным образом получаем следующий результат.

Теорема 4. Пусть G и D – два произвольных взаимно ортогональных латинских квадрата порядка ν . Зададим биективное отображение $\sigma(Z_{i,j}) = Z_{k,s}$, где $G_{ij} = k$ и $D_{ij} = s$, и соответствующую olc-перестановочную матрицу

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j})$$

согласно определению 3. Пусть H – сильвестрова матрица Адамара порядка ν . Тогда двоичная матрица Адамара L_b вида

$$L = (I_{\nu} \otimes H) P^{(c)} (I_{\nu} \otimes H)$$

такова, что каждая ее строка и каждый ее столбец представляет собой бент-функцию.

Доказательство. Этот результат следует из теоремы 2, если принять во внимание, что обе суммы

$$\sum_{i=1}^{\nu} \sigma(Z_{i,j}) \quad \text{if} \quad \sum_{j=1}^{\nu} \sigma(Z_{i,j})$$

являются перестановочными матрицами для всех индексов $i, j \in \{1, \dots, \nu\}$. В этом случае обе матрицы $P^{(c)}$ и $P^{(c)t}$ являются lc-перестановочными. \blacktriangle

Далее в § 3 мы построим два бесконечных семейства lc-перестановочных матриц $P^{(c)}$ порядка ν^2 для $\nu=2^m$, где $m\geqslant 2$ – натуральное число (но четное для первой конструкции). С помощью первой конструкции полученные lc-перестановки индуцируют двоичные матрицы Адамара L_b , в которых все их строки являются бент-функциями согласно теореме 2. В некоторых случаях эти бент-функции имеют максимальную алгебраическую степень в соответствии с теоремой 3. Размерность ядра равна нулю, а значения ранга матрицы L_b для небольших значений ν были вычислены, и эти результаты мы приводим ниже. Все матрицы L_b из семейства,

построенного второй конструкцией в п. 3.2, имеют то дополнительное свойство, что каждый столбец их матрицы L_b также является бент-функцией.

\S 3. Построение lc-перестановочных и olc-перестановочных матриц

Чтобы говорить об lc-перестановках согласно определению 2, нам нужно, чтобы сумма блоковых матриц $\sigma(Z_{i,j})$ для любого i давала перестановочную матрицу, скажем, $P_i^{(c)}$. Идея состоит в том, чтобы вернуться назад и из c-перестановок $P_i^{(c)}$ построить блоковые матрицы $\sigma(Z_{i,j})$ для матрицы $P^{(c)}$. На этой идее основаны следующие две конструкции (более подробно эти конструкции описаны в [13]).

3.1. Семейство lc-перестановок. Для каждого четного положительного натурального числа $m\geqslant 2$ предположим, что нам известны $\nu=2^m$ c-перестановок порядка ν , которые обозначим через $P_1^{(c)},\ldots,P_{\nu}^{(c)}$. Наша цель – представить $P_k^{(c)}$ в виде суммы блоковых матриц типа $Z_{i,j}$. Проблема, с которой мы сталкиваемся при разложении каждой матрицы $P_k^{(c)}$ на блоковые матрицы типа $Z_{i,j}$, состоит в том, что, например, две матрицы $Z_{i,a}$ и $Z_{i,b}$ появляются с разными значениями $a\neq b$, но с одним и тем же индексом i. В этом случае матрица $P^{(c)}$, которую мы хотим найти, не будет c-перестановочной порядка ν^2 . Чтобы справиться с этой проблемой, помимо перестановок $P_k^{(c)}$ для $k\in\{1,\ldots,\nu\}$ мы будем строить перестановочную матрицу $P^{(c)}$, используя латинский квадрат Q порядка ν .

Конструкция 1. Пусть $m\geqslant 2$ — четное натуральное число, и пусть $\nu=2^m$. Построение lc-перестановочной матрицы $P^{(c)}$ порядка ν^2 из ν c-перестановок $P_1^{(c)}$, $P_2^{(c)},\ldots,P_{\nu}^{(c)}$ порядка ν и латинского квадрата $Q=[q_{i,j}]$ порядка ν состоит в следующем. Для каждой матрицы $P_k^{(c)}$ рассмотрим отдельно каждую ее строку, например, строку j, и найдем в этой строке позицию, где стоит элемент 1. Пусть, например, этот элемент стоит в i-й позиции. Далее мы вычисляем uндикатор $\tau=q_{k,i}$. Строка с номером j матрицы $P_k^{(c)}$ записывается в качестве строки с номером j блока (k,τ) матрицы $P^{(c)}$, которую мы строим. Таким образом мы гарантируем, что построенная матрица $P^{(c)}$ будет lc-перестановочной.

3.2. Семейство *olc-***перестановок.** Теперь опишем другую конструкцию.

Конструкция 2. Возьмем пару ортогональных латинских квадратов $G = [g_{i,j}]$ и $D = [d_{i,j}]$ порядка ν и построим olc-перестановочную матрицу $P^{(c)}$ следующим образом:

$$P^{(c)} = \sum_{i,j=1}^{\nu} Z_{i,j} \otimes \sigma(Z_{i,j}),$$

где $\sigma(Z_{i,j})=Z_{k,s}$, число k – элемент латинского квадрата G с координатами (i,j), т.е. $g_{i,j}=k$, а число s – элемент латинского квадрата D с координатами (i,j), т.е. $s=d_{i,j}$.

В табл. 1 для небольших значений ν приведены полученные значения ранга ${\rm rank}(L_b^*)$ для постоянного или произвольного вектора c с элементами ± 1 для матриц L_b^* , построенных конструкцией 2. Кроме того, приведена верхняя граница (ВГ), заданная теоремой 3.

Матрицы L^* , построенные с помощью конструкции 2, имеют такие же свойства, как и приведенные в теоремах 1 и 2, лемме 2 и теореме 3 для случая lc-перестановочных матриц. Однако имеются некоторые исключения, такие как, например, тот факт, что не только строки, но и столбцы соответствующей двоичной матрицы L^*_h

 $\begin{tabular}{ll} $Taблицa 1 \\ Pанги кодов из конструкции 2 и верхние границы \\ \end{tabular}$

	Постоянный c		Произвольный \boldsymbol{c}	
ν	Полученные ранги	ВΓ	Полученные ранги	ВΓ
2^2	6	6	6, 7	7
2^3	$[10, \dots, 14]$	14	$[10, \dots, 15]$	15
2^{4}	$[22, \dots, 30]$	30	$[22, \ldots, 31]$	31
2^{5}	$[56, \ldots, 61]$	62	$[58, \ldots, 62]$	63
2^{6}	$[118, \ldots, 125]$	126	$[122, \dots, 126]$	127

являются бент-функциями. Более того, результаты вычислений для небольших значений m показывают, что величина $\operatorname{rank}(L_b^*)$ почти всегда удовлетворяет верхней границе, указанной в теореме 3. В табл. 1 приведены некоторые результаты вычислений, полученных с помощью системы компьютерной алгебры МАСМА [16].

СПИСОК ЛИТЕРАТУРЫ

- 1. Beth T., Jungnickel D., Lenz B. Design Theory. Cambridge, UK: Cambridge Univ. Press, 1986.
- 2. McFarland R.L. A Family of Difference Sets in Non-cyclic Groups // J. Combin. Theory Ser. A. 1973. V. 15. № 1. P. 1–10. https://doi.org/10.1016/0097-3165(73)90031-9
- 3. Phelps K.T., Rifà J., Villanueva M. Rank and Kernel of Binary Hadamard Codes // IEEE Trans. Inform. Theory. 2005. V. 51. № 11. P. 3931–3937. https://doi.org/10.1109/TIT. 2005.856940
- 4. Bose R.C., Shrikhande S.S. A Note on a Result in the Theory of Code Construction // Inform. Control. 1959. V. 2. № 2. P. 183–194. https://doi.org/10.1016/S0019-9958(59) 90376-6
- Kesava Menon P. On Difference Sets Whose Parameters Satisfy a Certain Relation // Proc. Amer. Math. Soc. 1962. V. 13. № 5. P. 739–745. https://doi.org/10.1090/ S0002-9939-1962-0142471-0
- 6. Ryser H.J. A Note on a Combinatorial Problem // Proc. Amer. Math. Soc. 1950. V. 1. N_2 4. P. 422–424. https://doi.org/10.1090/S0002-9939-1950-0036732-5
- 7. Borges J., Rifà J., Zinoviev V. New Families of Completely Regular Codes and Their Corresponding Distance Regular Coset Graphs // Des. Codes Cryptogr. 2014. V. 70. № 1–2. P. 139–148. https://doi.org/10.1007/s10623-012-9713-3
- 8. Rifà J., Zinoviev V.A. On Binary Quadratic Symmetric Bent and Semi-Bent Functions // Mosc. Math. J. 2023. V. 23. № 1. P. 121–128. https://doi.org/10.17323/1609-4514-2023-23-1-121-128
- 9. Meisner D.B. On a Construction of Regular Hadamard Matrices // Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Matem. Appl. Ser. 9. 1992. V. 3. Nº 4. P. 233–240.
- 10. Magnus J.R., Neudecker H. The Commutation Matrix: Some Properties and Applications // Ann. Statist. 1979. V. 7. № 2. P. 381–394. https://doi.org/10.1214/aos/1176344621
- 11. Семаков Н.В., Зайцев Г.В., Зиновьев В.А. Корреляционное декодирование блочных кодов методом быстрого преобразования Фурье—Адамара // Тр. 4-го Симпоз. по проблеме избыточности в информационных системах. Ч. 2. Тез. докл. Ленинград, 1970. С. 545–550.
- 12. 3айцев Г.В., 3иновъев В.А., Cемаков Н.В. Быстрое корреляционное декодирование блочных кодов // Кодирование и передача дискретных сообщений в системах связи. М.: Наука, 1976. С. 76–85.
- 13. Rifà J., Villanueva M., Zinoviev D.V., Zinoviev V.A. On Constructions of Regular Hadamard Matrices and Bent Functions // Probl. Inf. Transm. 2024. V. 60. № 4 (to appear). https://doi.org/10.1134/S003294602404001X

- 14. Pieprzyk J., Wang H., Zhang X.-M. Möbius Transforms, Coincident Boolean Functions and Non-coincidence Property of Boolean Functions // Int. J. Comput. Math. 2011. V. 88. № 7. P. 1398–1416. https://doi.org/10.1080/00207160.2010.509428
- 15. Rothaus O.S. On "Bent" Functions // J. Combin. Theory Ser. A. 1976. V. 20. N_2 3. P. 300–305. https://doi.org/10.1016/0097-3165(76)90024-8
- Bosma W., Cannon J., Playoust C. The Magma Algebra System. I: The User Language // J. Symbolic Comput. 1997. V. 24. № 3-4. P. 235-265. https://doi.org/10.1006/jsco. 1996.0125

Рифа Жузеп (Rifa, Josep)
Вильянуэва Мерсе (Villanueva, Mercè)
Факультет информационно-коммуникационных технологий,
Независимый университет Барселоны,
Серданьола-дель-Вальес, Каталония, Испания
josep.rifa@uab.cat
merce.villanueva@uab.cat
Зиновьев Виктор Александрович
Зиновьев Дмитрий Викторович
Институт проблем передачи информации
им. А.А. Харкевича РАН, Москва
vazinov@iitp.ru
dzinov@gmail.com

Поступила в редакцию 10.07.2024 После доработки 21.11.2024 Принята к публикации 18.12.2024