ОНИТПроблемы передачи информации Problems of Information Transmission

  • ISSN (Print) 0555-2923
  • ISSN (Online) 3034-5839

Существование последовательностей, удовлетворяющих рекуррентным соотношениям билинейного типа

Код статьи
10.31857/S0555292323020079-1
DOI
10.31857/S0555292323020079
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 2
Страницы
102-119
Аннотация
Рассматриваются последовательности $\left\{A_n\right\}_{n=-\infty}^{+\infty}$ элементов произвольного поля $\mathbb{F}$, удовлетворяющие разложениям вида $A_{m+n} A_{m-n}=a_1(m) b_1(n)+a_2(m) b_2(n)$, $A_{m+n+1} A_{m-n}=\tilde a_1(m) \tilde b_1(n)+\tilde a_2(m) \tilde b_2(n)$, где $a_1,a_2,b_1,b_2\colon \mathbb{Z}\to\mathbb{F}$. Доказываются результаты о существовании и единственности таких последовательностей. Полученные результаты используются для построения аналогов криптографических алгоритмов Диффи - Хеллмана и Эль-Гамаля. Задача дискретного логарифмирования ставится в группе $(S,+)$, где множество $S$ состоит из четверок $S(n)=(A_{n-1},A_n, A_{n+1}, A_{n+2})$, $n\in\mathbb{Z}$, а $S(n)+S(m)=S(n+m)$.
Ключевые слова
нелинейные рекуррентные последовательности последовательности Сомоса криптография с открытым ключом
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Авдеева М.О., Быковский В.А. Гиперэллиптические системы последовательностей и функций // Дальневост. матем. журн. 2016. Т. 16. № 2. С. 115-122. https://www.mathnet.ru/dvmg326
  2. 2. Илларионов А.А. Гиперэллиптические системы последовательностей ранга 4 // Матем. сб. 2019. Т. 210. № 9. С. 59-88. https://doi.org/10.4213/sm9050
  3. 3. Robinson R.M. Periodicity of Somos Sequences // Proc. Amer. Math. Soc. 1992. V. 116. № 3. P. 613-619. https://doi.org/10.2307/2159426
  4. 4. Shipsey R. Elliptic Divisibility Sequences. PhD Thesis. Goldsmiths College, Univ. London, 2000.
  5. 5. Fomin S., Zelevinsky A. The Laurent Phenomenon // Adv. Appl. Math. 2002. V. 28. № 2. P. 119-144. https://doi.org/10.1006/aama.2001.0770
  6. 6. Swart C.S. Elliptic Curves and Related Sequences. PhD Thesis. Royal Holloway, Univ. London, 2003.
  7. 7. Hone A.N.W. Elliptic Curves and Quadratic Recurrence Sequences // Bull. Lond. Math. Soc. 2005. V. 37. № 2. P. 161-171. https://doi.org/10.1112/S0024609304004163
  8. 8. van der Poorten A.J., Swart C.S. Recurrence Relations for Elliptic Sequences: Every Somos 4 Is a Somos k // Bull. Lond. Math. Soc. 2006. V. 38. № 4. P. 546-554. https://doi.org/10.1112/S0024609306018534
  9. 9. Hone A.N.W. Sigma Function Solution of the Initial Value Problem for Somos 5 Sequences // Trans. Amer. Math. Soc. 2007. V. 359. № 10. P. 5019-5034. https://doi.org/10.1090/S0002-9947-07-04215-8
  10. 10. Hone A.N.W., Swart C.Integrality and the Laurent Phenomenon for Somos 4 and Somos 5 Sequences // Math. Proc. Cambridge Philos. Soc. 2008. V. 145. № 1. P. 65-85. https://doi.org/10.1017/S030500410800114X
  11. 11. Hone A.N.W. Analytic Solutions and Integrability for Bilinear Recurrences of Order Six // Appl. Anal. 2010. V. 89. № 4. P. 473-492. https://doi.org/10.1080/00036810903329977
  12. 12. Fedorov Yu.N., Hone A.N.W. Sigma-Function Solution to the General Somos-6 Recurrence via Hyperelliptic Prym Varieties // J. Integrable Syst. 2016. V. 1. № 1. Art. xyw012 (34 pp.). https://doi.org/10.1093/integr/xyw012
  13. 13. Быковский В.А., Устинов А.В. Сомос-4 и эллиптические системы последовательностей // ДАН. 2016. Т. 471. № 1. С. 7-10. https://doi.org/10.7868/S0869565216310030
  14. 14. Shor P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring // Proc. 35th Annu. Symp. on Foundations of Computer Science. Santa Fe, NM, USA. Nov. 20-22, 1994. P. 124-134. https://doi.org/10.1109/SFCS.1994.365700
  15. 15. Илларионов А.А. Асимметричные криптосистемы и гиперэллиптические последовательности // Дальневост. матем. журн. 2019. Т. 19. № 2. С. 185-196. https://www.mathnet.ru/dvmg407
  16. 16. Устинов А.В. Элементарный подход к изучению последовательностей Сомоса // Тр. МИАН. 2019. Т. 305. С. 330-343. https://doi.org/10.4213/tm3990
  17. 17. Ward M. Memoir on Elliptic Divisibility Sequences // Amer. J. Math. 1948. V. 70. № 1. P. 31-74. https://doi.org/10.2307/2371930
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека