- Код статьи
- S3034583925020067-1
- DOI
- 10.7868/S3034583925020067
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 61 / Номер выпуска 2
- Страницы
- 83-95
- Аннотация
- Реконфигурируемая интеллектуальная поверхность (РИП) представляет собой одну из перспективных технологий для повышения пропускной способности и расширения покрытия существующих и будущих беспроводных сетей. Предполагается, что РИП будет активно применяться в сценариях вне помещений, где она будет подвержена влиянию погодных условий, таких как дождь. Дождь, в свою очередь, повлияет на амплитудно- и фазо-частотные характеристики элементарных ячеек (ЭЯ), из которых формируется РИП, что приводит к ухудшению производительности беспроводной системы с РИП в смысле отношения сигнал/шум (ОСШ) на приемнике. В статье исследуется влияние дождя различной интенсивности на ОСШ на приемнике беспроводной системы с РИП, работающей на частоте 4,8 ГГц. Кроме того, предлагается метод компенсации этого влияния с помощью утолщения диэлектрика и последующей корректировки размеров ЭЯ. Демонстрируется, что предлагаемый метод компенсации обеспечивает снижение потерь ОСШ на приемнике до 0,9 дБ в условиях дождя.
- Ключевые слова
- реконфигурируемые интеллектуальные поверхности 5G PIN-диод капли дождя CST Microwave Studio
- Дата публикации
- 25.08.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 63
Библиография
- 1. Zhang Z., Dai L. Reconfigurable Intelligent Surfaces for 6G: Nine Fundamental Issues and One Critical Problem // Tsinghua Sci. Technol. 2023. V. 28. № 5. P. 929–939. https://doi.org/10.26599/TST.2023.9010001
- 2. Zhang Y.-P., Wang P., Goldsmith A. Rainfall Effect on the Performance of MillimeterWave MIMO Systems // IEEE Trans. Wirel. Commun. 2015. V. 14. № 9. P. 4857–4866. https://doi.org/10.1109/TWC.2015.2427282
- 3. Christofilakis V., Tatsis G., Chronopoulos S.K., Sakkas A., Skrivanos A.G., Peppas K.P., Nistazakis H.E., Baldoumas G., Kostarakis P. Earth-to-Earth Microwave Rain Attenuation Measurements: A Survey on the Recent Literature // Symmetry. 2020. V. 12. № 9. P. 1440 (30 pp.). https://doi.org/10.3390/sym12091440
- 4. Han C., Duan S. Impact of Atmospheric Parameters on the Propagated Signal Power of Millimeter-Wave Bands Based on Real Measurement Data // IEEE Access. 2019. V. 7. P. 113626–113641. https://doi.org/10.1109/ACCESS.2019.2933025
- 5. Mancini A., Lebr´on R.M., Salazar J.L. The Impact of a Wet S-Band Radome on DualPolarized Phased-Array Radar System Performance // IEEE Trans. Antennas Propag. 2018. V. 67. № 1. P. 207–220. https://doi.org/10.1109/TAP.2018.2876733
- 6. Liu Z., Guo Q., Li M., Xu C., Li Y. Anti-interfering Method for Environmental Foreign Bodies for the Microstrip Antenna Sensor // Measurement. 2022. V. 195. P. 111132. https: //doi.org/10.1016/j.measurement.2022.111132
- 7. Tronin S.S., Tyarin A.S., Kureev A.A., Khorov E.M. Effect of Water Drops on the Characteristics of a Reconfigurable Intelligent Surface // J. Commun. Technol. Electron. 2024. V. 69. № 10–12. P. 394–401. https://doi.org/10.1134/S1064226925700044
- 8. Burtakov I., Kureev A., Tyarin A., Khorov E. QRIS: A QuaDRiGa-Based Simulation Platform for Reconfigurable Intelligent Surfaces // IEEE Access. 2023. V. 11. P. 90670–90682. https://doi.org/10.1109/ACCESS.2023.3306954
- 9. Yang Z., Chen P., Guo Z., Ni D. Low-Cost Beamforming and DOA Estimation Based on One-Bit Reconfigurable Intelligent Surface // IEEE Signal Process. Lett. 2022. V. 29. P. 2397–2401. https://doi.org/10.1109/LSP.2022.3223282
- 10. Cao X., Chen Q., Tanaka T., Kozai M., Minami H. A 1-bit Time-Modulated Reflectarray for Reconfigurable-Intelligent-Surface Applications // IEEE Trans. Antennas Propag. 2023. V. 71. № 3. P. 2396–2408. https://doi.org/10.1109/TAP.2022.3233659
- 11. Shekhawat A.S., Kashyap B.G., Torres R.W.R., Shan F., Trichopoulos G.C. A MillimeterWave Single-Bit Reconfigurable Intelligent Surface with High-Resolution Beam-Steering and Suppressed Quantization Lobe // IEEE Open J. Antennas Propag. 2024. V. 6. № 1. P. 311–325. https://doi.org/10.1109/OJAP.2024.3506453
- 12. Tyarin A.S., Kureev A.A., Khorov E.M. Fundamentals of Design and Operation of Reconfigurable Intelligent Surfaces // J. Commun. Technol. Electron. 2024. V. 69. № 1–3. P. 103–109. https://doi.org/10.1134/s1064226924700062
- 13. Rajagopalan H., Rahmat-Samii Y. On the Reflection Characteristics of a Reflectarray Element with Low-Loss and High-Loss Substrates // IEEE Antennas Propag. Mag. 2010. V. 52. № 4. P. 73–89. https://doi.org/10.1109/MAP.2010.5638237
- 14. Balanis C.A. Antenna Theory: Analysis and Design. Hoboken, NJ: Wiley, 2016.
- 15. Xiao Q., Zhang Y.Z., Iqbal S., Wan X., Cui T.J. Beam Scanning at Ka-Band by Using Reflective Programmable Metasurface // Proc. 2019 Int. Symp. on Antennas and Propagation (ISAP 2019). Xi’an, China. Oct. 27–30, 2019. P. 1–3.
- 16. Zhu Q., Wang C.-X., Hua B., Mao K., Jiang S., Yao M. 3GPP TR 38.901 Channel Model // Wiley 5G Ref: The Essential 5G Reference Online. Wiley Online Library, 2021. P. 1–35. http://doi.org/10.1002/9781119471509.w5gref048
- 17. Crane R.K. Electromagnetic Wave Propagation through Rain. New York: Wiley, 1996.
- 18. Poyda A., Burtakov I., Kureev A., Khorov E. Fast Wide Beam Adjustment of Reconfigurable Intelligent Surfaces in Practical Deployments // IEEE Access. 2024. V. 12. P. 174066–174077. https://doi.org/10.1109/ACCESS.2024.3496570
- 19. Arun V., Balakrishnan H. RFocus: Beamforming Using Thousands of Passive Antennas // Proc. 17th USENIX Symp. on Networked Systems Design and Implementation (NSDI’20). Santa Clara, CA, USA. Feb. 25–27, 2020. P. 1047–1061. Available at https://www.usenix.org/system/files/nsdi20-paper-arun.pdf
- 20. Pekcan D.K., Liao H., Ayanoglu E. Received Power Maximization Using Nonuniform Discrete Phase Shifts for RISs with a Limited Phase Range // IEEE Open J. Commun. Soc. 2024. V. 5. P. 7447–7466. https://doi.org/10.1109/OJCOMS.2024.3501856