- PII
- S3034583925020067-1
- DOI
- 10.7868/S3034583925020067
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 2
- Pages
- 83-95
- Abstract
- Reconfigurable intelligent surfaces (RIS) is one of the promising technologies for increasing the throughput and expanding the coverage of existing and future wireless networks. It is expected that RIS will be actively used in outdoor scenarios, where it will be exposed to weather conditions such as rain. Rain, in turn, would affect the amplitude and phase frequency characteristics of the unit cells (UCs) that form the RIS, leading to a deterioration in the performance of the RIS wireless system in terms of the signal-to-noise ratio (SNR) at the receiver. This paper investigates the effect of rain of various intensity on the SNR at the receiver of a wireless system with RIS operating at a frequency of 4.8 GHz. Also, a method is proposed to compensate for this effect by thickening the dielectric and subsequently adjusting the sizes of the UCs. It is demonstrated that the proposed compensation method reduces the SNR loss at the receiver to 0.9 dB in rainy conditions.
- Keywords
- реконфигурируемые интеллектуальные поверхности 5G PIN-диод капли дождя CST Microwave Studio
- Date of publication
- 25.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 66
References
- 1. Zhang Z., Dai L. Reconfigurable Intelligent Surfaces for 6G: Nine Fundamental Issues and One Critical Problem // Tsinghua Sci. Technol. 2023. V. 28. № 5. P. 929–939. https://doi.org/10.26599/TST.2023.9010001
- 2. Zhang Y.-P., Wang P., Goldsmith A. Rainfall Effect on the Performance of MillimeterWave MIMO Systems // IEEE Trans. Wirel. Commun. 2015. V. 14. № 9. P. 4857–4866. https://doi.org/10.1109/TWC.2015.2427282
- 3. Christofilakis V., Tatsis G., Chronopoulos S.K., Sakkas A., Skrivanos A.G., Peppas K.P., Nistazakis H.E., Baldoumas G., Kostarakis P. Earth-to-Earth Microwave Rain Attenuation Measurements: A Survey on the Recent Literature // Symmetry. 2020. V. 12. № 9. P. 1440 (30 pp.). https://doi.org/10.3390/sym12091440
- 4. Han C., Duan S. Impact of Atmospheric Parameters on the Propagated Signal Power of Millimeter-Wave Bands Based on Real Measurement Data // IEEE Access. 2019. V. 7. P. 113626–113641. https://doi.org/10.1109/ACCESS.2019.2933025
- 5. Mancini A., Lebr´on R.M., Salazar J.L. The Impact of a Wet S-Band Radome on DualPolarized Phased-Array Radar System Performance // IEEE Trans. Antennas Propag. 2018. V. 67. № 1. P. 207–220. https://doi.org/10.1109/TAP.2018.2876733
- 6. Liu Z., Guo Q., Li M., Xu C., Li Y. Anti-interfering Method for Environmental Foreign Bodies for the Microstrip Antenna Sensor // Measurement. 2022. V. 195. P. 111132. https: //doi.org/10.1016/j.measurement.2022.111132
- 7. Tronin S.S., Tyarin A.S., Kureev A.A., Khorov E.M. Effect of Water Drops on the Characteristics of a Reconfigurable Intelligent Surface // J. Commun. Technol. Electron. 2024. V. 69. № 10–12. P. 394–401. https://doi.org/10.1134/S1064226925700044
- 8. Burtakov I., Kureev A., Tyarin A., Khorov E. QRIS: A QuaDRiGa-Based Simulation Platform for Reconfigurable Intelligent Surfaces // IEEE Access. 2023. V. 11. P. 90670–90682. https://doi.org/10.1109/ACCESS.2023.3306954
- 9. Yang Z., Chen P., Guo Z., Ni D. Low-Cost Beamforming and DOA Estimation Based on One-Bit Reconfigurable Intelligent Surface // IEEE Signal Process. Lett. 2022. V. 29. P. 2397–2401. https://doi.org/10.1109/LSP.2022.3223282
- 10. Cao X., Chen Q., Tanaka T., Kozai M., Minami H. A 1-bit Time-Modulated Reflectarray for Reconfigurable-Intelligent-Surface Applications // IEEE Trans. Antennas Propag. 2023. V. 71. № 3. P. 2396–2408. https://doi.org/10.1109/TAP.2022.3233659
- 11. Shekhawat A.S., Kashyap B.G., Torres R.W.R., Shan F., Trichopoulos G.C. A MillimeterWave Single-Bit Reconfigurable Intelligent Surface with High-Resolution Beam-Steering and Suppressed Quantization Lobe // IEEE Open J. Antennas Propag. 2024. V. 6. № 1. P. 311–325. https://doi.org/10.1109/OJAP.2024.3506453
- 12. Tyarin A.S., Kureev A.A., Khorov E.M. Fundamentals of Design and Operation of Reconfigurable Intelligent Surfaces // J. Commun. Technol. Electron. 2024. V. 69. № 1–3. P. 103–109. https://doi.org/10.1134/s1064226924700062
- 13. Rajagopalan H., Rahmat-Samii Y. On the Reflection Characteristics of a Reflectarray Element with Low-Loss and High-Loss Substrates // IEEE Antennas Propag. Mag. 2010. V. 52. № 4. P. 73–89. https://doi.org/10.1109/MAP.2010.5638237
- 14. Balanis C.A. Antenna Theory: Analysis and Design. Hoboken, NJ: Wiley, 2016.
- 15. Xiao Q., Zhang Y.Z., Iqbal S., Wan X., Cui T.J. Beam Scanning at Ka-Band by Using Reflective Programmable Metasurface // Proc. 2019 Int. Symp. on Antennas and Propagation (ISAP 2019). Xi’an, China. Oct. 27–30, 2019. P. 1–3.
- 16. Zhu Q., Wang C.-X., Hua B., Mao K., Jiang S., Yao M. 3GPP TR 38.901 Channel Model // Wiley 5G Ref: The Essential 5G Reference Online. Wiley Online Library, 2021. P. 1–35. http://doi.org/10.1002/9781119471509.w5gref048
- 17. Crane R.K. Electromagnetic Wave Propagation through Rain. New York: Wiley, 1996.
- 18. Poyda A., Burtakov I., Kureev A., Khorov E. Fast Wide Beam Adjustment of Reconfigurable Intelligent Surfaces in Practical Deployments // IEEE Access. 2024. V. 12. P. 174066–174077. https://doi.org/10.1109/ACCESS.2024.3496570
- 19. Arun V., Balakrishnan H. RFocus: Beamforming Using Thousands of Passive Antennas // Proc. 17th USENIX Symp. on Networked Systems Design and Implementation (NSDI’20). Santa Clara, CA, USA. Feb. 25–27, 2020. P. 1047–1061. Available at https://www.usenix.org/system/files/nsdi20-paper-arun.pdf
- 20. Pekcan D.K., Liao H., Ayanoglu E. Received Power Maximization Using Nonuniform Discrete Phase Shifts for RISs with a Limited Phase Range // IEEE Open J. Commun. Soc. 2024. V. 5. P. 7447–7466. https://doi.org/10.1109/OJCOMS.2024.3501856