RAS Nano & ITПроблемы передачи информации Problems of Information Transmission

  • ISSN (Print) 0555-2923
  • ISSN (Online) 3034-5839

Invariant measures for contact processes with state-dependent birth and death rates

PII
10.31857/S0555292323020055-1
DOI
10.31857/S0555292323020055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
63-82
Abstract
We consider contact processes on locally compact separable metric spaces with birth and death rates that are heterogeneous in space. We formulate conditions on the rates that ensure the existence of invariant measures of contact processes. One of the crucial conditions is the so-called critical regime condition. To prove the existence of invariant measures, we use the approach proposed in our preceding paper. We discuss in detail the multi-species contact model with a compact space of marks (species) in which both birth and death rates depend on the marks.
Keywords
маркированная модель контактов в непрерывном пространстве процесс рождения и гибели в непрерывной среде критический режим корреляционные функции
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Harris T.E. Contact Interactions on a Lattice // Ann. Probab. 1974. V. 2. № 6. P. 969-988. https://doi.org/10.1214/aop/1176996493
  2. 2. Holley R., Liggett T.M. The Survival of Contact Processes // Ann. Probab. 1978. V. 6. № 2. P. 198-206. https://doi.org/10.1214/aop/1176995567
  3. 3. Liggett T.M.Interacting Particle Systems. New York: Springer-Verlag, 1985.
  4. 4. Kondratiev Yu., Kutoviy O., Pirogov S. Correlation Functions and Invariant Measures in Continuous Contact Model // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2008. V. 11. № 2. P. 231-258. https://doi.org/10.1142/S0219025708003038
  5. 5. Kondratiev Yu.G., Kutoviy O.V., Pirogov S.A., Zhizhina E. Invariant Measures for Spatial Contact Model in Small Dimensions // Markov Process. Related Fields. 2021. V. 27. № 3. P. 413-438. https://math-mprf.org/journal/articles/id1616
  6. 6. Kondratiev Yu., Skorokhod A. On Contact Processes in Continuum // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2006. V. 9. № 2. P. 187-198. https://doi.org/10.1142/S0219025706002305
  7. 7. Kondratiev Yu., Pirogov S., Zhizhina E. A Quasispecies Continuous Contact Model in a Critical Regime // J. Stat. Phys. 2016. V. 163. № 2. P. 357-373. https://doi.org/10.1007/s10955-016-1480-5
  8. 8. Pirogov S., Zhizhina E., A Quasispecies Continuous Contact Model in a Subcritical Regime // Moscow Math. J. 2019. V. 19. № 1. P. 121-132. https://doi.org/10.17323/1609-4514-2019-19-1-121-132
  9. 9. Nowak M. What Is a Quasispecies? // Trends Ecol. Evol. 1992. V. 7. № 4. P. 118-121. https://doi.org/10.1016/0169-5347 (92)90145-2
  10. 10. Pirogov S., Zhizhina E. Contact Processes on General Spaces. Models on Graphs and on Manifolds // Electron. J. Probab. 2022. V. 27. Article no. 41 (14 pp.). doi.org/10.1214/22-EJP765
  11. 11. Ruelle D. Statistical Mechanics: Rigorous Results. New York: Benjamin, 1969.
  12. 12. Lenard A. Correlation Functions and the Uniqueness of the State in Classical Statistical Mechanics // Commun. Math. Phys. 1973. V. 30. № 1. P. 35-44. https://doi.org/10.1007/BF01646686
  13. 13. Lenard A. States of Classical Statistical Mechanical Systems of Infinitely Many Particles. II. Characterization of Correlation Measures // Arch. Rational Mech. Anal. 1975. V. 59. № 3. P. 241-256. https://doi.org/10.1007/BF00251602
  14. 14. Petrov V.V. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford: Clarendon; New York: Oxford Univ. Press, 1995.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library